Structural Ramsey theory and topological dynamics I

L. Nguyen Van Thé

Université Aix-Marseille 3

February 2011

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

Part I

Outline

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

Outline and goals

Describe and elaborate on a theory developed in 2005 by Kechris, Pestov and Todorcevic.

- Main references:
 - A. Kechris, V. Pestov and S. Todorcevic, Fraïssé limits, Ramsey theory and topological dynamics of automorphism groups, GAFA, 15, p105–189, 2005.
 - V. Pestov, Dynamics of infinite dimensional groups The Ramsey-Dvoretzky-Milman phenomenon, University Lecture Series, 40, 2006.
- Outline
 - History of extremely amenable groups.
 - Closed subgroups of S_{∞} , Fraïssé classes and Fraïssé limits.
 - Extreme amenability and Ramsey property.
 - Universal minimal flows.
 - Perspectives.

Part II

Extreme amenability

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

Brouwer's theorem and its generalizations

Theorem (Brouwer, 1911)

Let $n \in \mathbb{N}$, n > 0 and $f : [0, 1]^n \longrightarrow [0, 1]^n$ continuous. Then f has a fixed point.

Theorem (Schauder, 1930)

Idem with $[0,1]^n$ replaced by a compact convex subset of a normed vector space.

Theorem (Tychonoff, 1935)

Idem if normed space replaced by locally convex topological vector space.

Question

What if, instead of one single $f : K \longrightarrow K$, we have several maps?

Theorem (Markov, 1936 - Kakutani, 1938)

Let K be compact convex subset of a locally convex topological vector space,

F a semigroup of affine, continuous, commuting functions $K \longrightarrow K$. Then there is a common fixed point for all elements of F

Question

What semigroups have the same property?

Amenability and Day's theorem

Definition

Let S be a semigroup, $\ell^{\infty}(S)$ Banach space of bounded functions $S \longrightarrow \mathbb{R}$, sup norm. A mean on $\ell^{\infty}(S)$ is an element μ of $\ell^{\infty}(S)^*$ such that:

•
$$\mu(f) \ge 0$$
 whenever $f \ge 0$.

•
$$\mu(1) = 1$$

For
$$f \in \ell^{\infty}(S)$$
 and $s \in S$, set $sf : x \mapsto f(sx)$.

 μ is left invariant when $\mu(sf) = \mu(f)$ for all f, s.

S is amenable when there is a left invariant mean on $\ell^{\infty}(S)$.

Theorem (Day, 61)

Conclusion of Markov-Kakutani theorem holds when S is an amenable semigroup of continuous affine maps $K \longrightarrow K$.

Extreme amenability and Mitchell's theorem

Definition

A semigroup S is extremely amenable when there is a left invariant multiplicative mean on $\ell^{\infty}(S)$, ie $\mu(fg) = \mu(f)\mu(g)$ for all f, g.

Theorem (Mitchell, 66)

Let S be a semigroup. Then S is extremely amenable iff every action of S by continuous functions on any compact space has a fixed point.

Definition

A topological semigroup S is amenable (resp. extremely amenable) when there is left invariant (resp. left invariant and multiplicative) mean on $\ell^{\infty}(S) \cap C(S, \mathbb{R})$.

The case of topological semigroups

Theorem

Let S be a topological semigroup. TFAE:

- 1. S is amenable.
- 2. Every continuous action of S on a compact convex subset of a locally convex topological vector space has a fixed point.
- 3. Every continuous action of S on a compact space has an invariant Borel probability measure.

Theorem

Let S be a topological semigroup. TFAE:

- 1. *S* is extremely amenable.
- 2. Every continuous action of S of a compact space has a fixed point.

Are there extremely amenable groups?

Remark

Extremely amenable groups mentioned in 67 by Granirer as hypothetical objects. Question of their existence appears in print in 70 (Mitchell).

Theorem (Herrer-Christensen, 75)

There is a Polish Abelian extremely amenable group.

Theorem (Veech, 77)

Let G be non-trivial and locally compact. Then G is not extremely amenable. Extremely amenable groups: examples everywhere! Examples

- 1. $O(\ell_2)$, pointwise convergence topology (Gromov-Milman, 84).
- 2. Measurable maps $[0,1] \rightarrow \mathbb{S}^1$ (Furstenberg-Weiss, unpub-Glasner, 98)

$$d(f,g)=\int_0^1 d(f(x),g(x))d\mu.$$

- 3. Aut(\mathbb{Q} , <), product topology induced by $\mathbb{Q}^{\mathbb{Q}}$ (Pestov, 98).
- Homeo₊([0,1]), Homeo₊(ℝ), pointwise convergence topology (Pestov, 98).
- 5. iso(U), pointwise convergence topology, U the Urysohn metric space (Pestov, 02).

Remark

Examples 3, 4, and 5 by Pestov use some Ramsey theoretic results.

The work of Kechris, Pestov and Todorcevic, I

Definition

 S_{∞} : the group of permutations of \mathbb{N} . Left invariant metric:

 $d(g,h) = 1/2^n$, with $n = \min\{k \in \mathbb{N} : g(k) \neq h(k)\}$.

This topology is Polish (separable, metrizable with a complete metric) but not locally compact.

Theorem (Kechris - Pestov - Todorcevic, 05)

There is a link between extreme amenability and Ramsey theory when G is a closed subgroup of S_{∞} .

Part III

Closed subgroups of S_∞

L. Nguyen Van Thé (Université Aix-Marseille 3) Ramsey theory and dynamics

February 2011 13 / 1

Ultrahomogeneous structures

Definition

Let $L = \{R_i : i \in I\}$ be a countable, first order, relational language. An L-structure \mathbb{F} is ultrahomogeneous when every isomorphism between finite substructures of \mathbb{F} extends to an automorphism of \mathbb{F} .

Example

$$L = \{<\}, < binary relation symbol.$$

 $\mathbb{F} = (\mathbb{Q}, <).$

More examples later.

Closed subgroups of S_{∞} and countable ultrahomogeneous structures

Proposition

- If 𝔅 is countable (WLOG, 𝔅 = (𝔅,...)), then Aut(𝔅) is a closed subgroup of S_∞.
- If G closed subgroup of S_{∞} , then there is
 - L countable language,
 - $\mathbb{F}_{G} = (\mathbb{N}, ...)$ countable ultrahomogeneous L-structure

such that

 $G = \operatorname{Aut}(\mathbb{F}_G).$

Relations of arity n: orbits of $G \curvearrowright \mathbb{N}^n$.

Corollary

The closed subgroups of S_{∞} are exactly the automorphism groups of countable ultrahomogeneous structures.

Combinatorial properties of classes of finite structures

L a countable first order relational language, ${\cal K}$ a class of finite L-structures.

Definition

 ${\cal K}$ satisfies:

- 1. *hereditarity* when it is is closed under substructures.

 $B_0 \xrightarrow[g_0]{} C$ 3. joint embedding property: for all $A, B \in \mathcal{K}$, there is $C \in \mathcal{K}$ such that A, B embed in C.

Fraïssé classes

Definition

 \mathcal{K} is a Fraïssé class when it is countable, has elements of arbitrary high cardinality, and satisfies properties 1, 2 and 3.

Examples

- \mathcal{LO} finite linear orders, $L = \{<\}$.
- G finite graphs, $L = \{E\}$ adjacency relation symbol.
- ▶ $\mathcal{M}_{\mathbb{Q}\cap[0,1]}$ finite metric spaces with rational distances, $L = \{d_q : q \in \mathbb{Q}\}$ binary relational language, $d_q^X(x, y)$ when $d^X(x, y) < q$.

Fraïssé's theorem

Proposition

Let \mathbb{F} be a countable ultrahomogeneous L-structure. Age(\mathbb{F}) the class of all finite substructures of \mathbb{F} . Then Age(\mathbb{F}) is a Fraïssé class.

Theorem (Fraïssé, 54)

Let \mathcal{K} be a Fraïssé class in some language countable L. Then up to isomorphism, there is a unique countable ultrahomogeneous L-structure \mathbb{F} for which

 $Age(\mathbb{F}) = \mathcal{K}.$

Notation: $\mathbb{F} = Flim(\mathcal{K})$.

Fraïssé classes of graphs

Fraïssé classes of graphs classified by Lachlan-Woodrow, 80.

Examples

- CG finite complete graphs: $Flim(CG) = K_{\omega}$. The countable infinite complete graph.
- ▶ G finite graphs: Flim(G) = R. The Rado graph, universal for countable graphs.
- ▶ G_n K_n-free finite graphs: Flim(G_n) = H_n. Henson graphs, universal for countable K_n-free graphs.

Fraïssé classes of oriented graphs

Fraïssé classes of oriented graphs classified by Cherlin, 98. Examples

- \mathcal{LO} finite linear orders: $Flim(\mathcal{LO}) = (\mathbb{Q}, <).$
- ▶ PO finite partial orders: Flim(PO) = P. The countable ultrahomogeneous poset, universal for all countable posets.

Oriented graphs, cont'd

C finite local orders:
Finite tournaments not embedding

 $Flim(\mathcal{C}) = S(2).$

Vertices: Rational points of \mathbb{S}^1 (no antipodal pair). Arcs: $x \to y$ iff (counterclockwise angle from x to y) $< \pi$.

L. Nguyen Van Thé (Université Aix-Marseille 3) F

Ramsey theory and dynamics

Metric spaces

Fraïssé classes of finite metric spaces still not classified. Examples

 M_S finite metric spaces with distances in S (conditions on S needed, see Delhommé-Laflamme-Pouzet-Sauer): Flim(M_S) = U_S.

The countable Urysohn space with distances in S, universal for countable metric spaces with distances in S.

• Interesting cases: finite, \mathbb{Q} , \mathbb{N} .

• \mathcal{U} finite ultrametric spaces with distances in $\{1/2^n : n \in \mathbb{N}\}$:

$$\forall x, y, z \ d(x, z) \leq \max(d(x, y), d(y, z)).$$

 $Flim(\mathcal{U}) = \mathbb{U}^{ult}.$

Dense subspace of the Baire space $\mathbb{N}^{\mathbb{N}}$ (eventually 0 sequences).

Structures with operations

The following are not relational, but can be coded as relational structures, and then correspond to cofinal subclasses of relational Fraïssé classes.

Examples

► \mathcal{BA} finite Boolean algebras, $L = \{0, 1, -, \land, \lor\}$: $Flim(\mathcal{BA}) = B_{\infty}$.

The countable atomless Boolean algebra, universal for countable Boolean algebras.

▶ \mathcal{V}_F finite vector spaces, F finite field, $L = \{+\} \cup \{f_\alpha : \alpha \in F\}$: $Flim(\mathcal{V}_F) = F^{<\omega}.$

The countable infinite dimensional vector space over F.

Summary

- ► Some Polish, non locally compact groups G are extremely amenable: Every continuous action of G on a compact space has a fixed point.
- ▶ When G closed subgroup of S_∞, extreme amenability will have a finite combinatorial characterization. This is so because:
- ▶ $G = Aut(\mathbb{F})$, \mathbb{F} a countable ultrahomogeneous first order structure.
- \blacktriangleright $\mathbb F$ is the Fraissé limit of a class $\mathcal K$ of finite structures.
- G will be extremely amenable iff some combinatorial phenomenon takes place at the level of \mathcal{K} (Ramsey type properties).